SLD的主要的应用:
OCT:
若选择窄带光作为 OCT 系统 的光源,由于相干长度较长,随着参考光与信号光 光程差的变化,系统得到的干涉条纹的对比度不 会产生明显变化,这就无法准确推断光程差的变 化量。相反,若选择宽带光作为 OCT 系统的光 源,由于相干长度较短,在相干长度内,随着参考 光与信号光光程差的变化,系统得到的干涉条纹 的对比度会产生较大的变化,而在相干长度之外 时,因为不会发生干涉而得不到干涉条纹。因此, 探测器能够灵敏地检测到光程差的变化 ,使 OCT 系统具有较高的定位精度。
OCT的核l心是光纤迈克尔逊干涉仪,低相干光源(宽带光源)超辐射发光二极管(Superluminescence Diode,SLD)发出的光耦合进入单模光纤,被2×2光纤耦合器均分为两路,一路是经透镜准直并从平面反射镜返回的参考光,另一路是经透镜聚焦到被测样品的采样光束。
由反射镜返回的参考光与被测样品的后向散射光在探测器上汇合,当两者之间的光程差在光源相干长度之内时则发生干涉,探测器输出信号反映介质的后向散射强度。
扫描反射镜并记录其空间位置,使参考光与来自介质内不同深度的后向散射光发生干涉。根据反射镜位置和相应的干涉信号强度即获得样品不同深度(z方向)的测量数据,再结合采样光束在x-y平面内的扫描,840nmSLD模块宽带光源,通过软件系统对干涉仪的输出进行探测、收集、处理和存贮。将采集到的数据点整合构成一幅视l网膜解剖剖面图(干涉图),图像显示为伪彩色断层图像,颜色对应反射信号的强弱。